# (On the trail of) A case for forward instrumentation in A+A collisions at RHIC

Paul Stankus

ORNL

ISU fSPHENIX workshop, March 12, 2016

## Outline

**Motivation** 

Theory progress

Example measurements

Thoughts going forward (npi)

## Summany

From PWS at CIPANP 2012, "Think Outside the Plasma"

We should expand beyond a narrow (myopic?) focus on the equilibrium and near-equilibrium properties of the QGP.

There's a lot of interesting & fundamental, non-perturbative and non-equilibrium QCD that we can now investigate systematically using high-energy heavy ion collisions.

# Three Eras of QCD

#### Era I: Perturbative QCD

Great successes include running of  $\alpha_s$  and evolution of hadron structure functions



Literally a textbook subject

#### Era II: Thermal QCD

The QGP state of matter: state -> static -> equilibrium, but near-equilibrium (transport) properties are very interesting

Text coming soon?

#### Era III: Non-perturbative, Non-thermal QCD

A big tent! that previous successes now enable us to investigate within A+A collisions at RHIC



# The Stadard-ish Model









Era III: Non-Perturbative and Non-Thermal



# Quantum Fluctuations Made Real



Most Intriguing!

Initial energy
density: quantum
fluctuations from a
coherent field Hama, Grasi, Kodama,

#### Nuclear Collsion





Re-heating/ thermalization



Relativistic hydrodynamics

Freezout/ decoupling

Final-state correlations





NexSPheRio



Guo-Liang Ma, QM11



# Theory finally getting interested...





#### Opportunities for Exploring Longitudinal Dynamics in Heavy Ion Collisions at RHIC

| Wednesday January 20 <sup>th</sup> , 2016 |                                                                                       |          |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------|----------|--|--|
| Author                                    | Title                                                                                 | Download |  |  |
| Wei Li                                    | Recent LHC results on rapidity correlations and fluctuations                          | <u></u>  |  |  |
| Shengli Huang                             | Forward fluctuations and correlations at RHIC                                         | <u></u>  |  |  |
| Wilke van der Schee                       | Rapidity Dependence in Holographic Heavy Ion Collisions                               | <u>*</u> |  |  |
| Rainer Fries                              | Towards the (3+1)-D Structure of Nuclear Collisions                                   | <u>*</u> |  |  |
| Soeren Schlichting                        | Thermalization / Isotropization in heavy-ion collisions                               | <u>*</u> |  |  |
| Heikki Mäntysaari                         | Longitudinal evolution of small-x gluons                                              | <u></u>  |  |  |
| Adam Bzdak                                | Longitudinal fluctuations of the medium created in heavy-ion collisions               | <u>*</u> |  |  |
| Wojciech Broniowski                       | Rapidity Fluctuations in the Initial State of Ultra-Relativistic Heavy-Ion Collisions | <u></u>  |  |  |
| Yi Yin                                    | Bulk viscous effects near the QCD critical point                                      | <u></u>  |  |  |

| Thursday January 21 <sup>st</sup> , 2016 |       |  |          |  |
|------------------------------------------|-------|--|----------|--|
| Author                                   | Title |  | Download |  |

#### Recommended reading starting points

#### Fluctuating length

- Idea: entropy deposition from wounded nucleons originates from string-like objects whose other end-point is randomly distributed in  $\eta$  (related to [Brodsky+Gunion+Kuhn 1977])
- "Soft particle production in hadronic collisions is dominated by multiple gluon exchanges between partons from the colliding hadrons, followed by radiation of ... partons distributed uniformly in rapidity" [Białas+Jeżabek 2004]
- Torque in p-A collisions (see talk by PB) [PB+WB+Moreira 2011, PB+WB, arXiv:1506.02817]
- Similar ideas in [Monnai+Schenke, arXiv:1509.04103]

Built-in into existing models/codes

e.g., HIJING [L.-G. Pang, QM2015]:



W. Broniowski (IFJ PAN & UJK)

Rapidity fluctuations

OELD

୬୦୯ 9 / 18



#### **RESULTS: BULK VARIABLES**

- Our expansion fails around  $\tau \sim 1/Q_s$
- Pocket formulas for simple slab nuclei:  $\frac{p_L}{p_T} = -\frac{1 \frac{3}{2a}(Q\tau)^2}{1 \frac{1}{2a}(Q\tau)^2} + O(Q\tau)^4$
- Consistent with numerical results





Rainer Fries

LONGITUDINAL DYNAMICS 2016

# "Club Sandwich" model

PWS poster at QM12 (as yet unpublished)



Once the tubes are defined, we can draw the initial energy deposit pattern on any slice of constant energy and constant proper time. This is the full description of a classical object.

### Three types of longitudinal dynamics



Asymmetry in multiplicity

Asymmetry in flow magnitude

Torque/twist of flow plane

From J. Jia at RBRC-OELD

#### Property of the multiplicity correlation



- SRC reflects correlations in the same source
- LRC reflects FB-asymmetry of number of sources, e.g.  $A_{part} = \frac{N_{part}^F N_{part}^B}{N_{part}^F + N_{part}^B}$



From W. Li (CMS) at RBRC-OELD

# Forward thoughts

- Think outside the plasma! Initial energy deposit and thermalization are a new and distinct sub-field of QCD
- Longitudinal patterns/correlations provide new information on initial event profiles
- New combined (forward + mid) rapidity instrumentation: calorimetery, tracking, PID
- PWS, et.al., toyed for years but nothing solid; someone new needs to pick up the trail

# Backup

#### The Glasma at LO: Yang-Mills eqns. for two nuclei

 $O(1/g^2)$  and all orders in  $(g\rho)^n$ 

$$D_{\mu}F^{\mu\nu,a} = \delta^{\nu+}\rho_1^a(x_{\perp})\delta(x^{-}) + \delta^{\nu-}\rho_2^a(x_{\perp})\delta(x^{+})$$

Glasma initial conditions from matching classical CGC wave-fns on light cone

Kovner, McLerran, Weigert; Krasnitz, RV; Lappi Lappi, Srednyak, RV (2010)



$$\nabla \cdot E = \rho_{\text{electric}}$$

$$\nabla \cdot B = \rho_{\text{magneti}}$$



$$\rho_{\text{electric}} \equiv ig[A, E]$$

$$\rho_{\text{magnetic}} = ig[A^i, B^i]$$

Boost invariant flux tubes of size with || color E & B fields- generate Chern-Simons charge

However, this results in very anisotropic ( $P_T >> P_I$ ) pressure for  $\tau \sim 1/Q_S$ 



From B. Schenke's talk CIPANP 2012, Friday AM



# Unhidden Agenda (PWS ca 2010)

#### **Physics Question**

What is the 3+1D evolution of the collision?

What are the transport/ nonequilibrium properties of the QGP?

How are conserved quantum numbers transported?

How does the QGP decay? le hadronization

What happens at higher baryon density (incl. phase plane)?

What is the parton-medium interaction?

How/when is initial equilibration/entropy generation achieved?

Are there nuclear effects at very high Q<sup>2</sup>?

How well-thermalized is the QGP state?

Does gluon saturation really exist?

# Measurement Approach

Control/vary initial longitudinal distribution

Control/vary initial transverse distribution

Control/vary baryon density

High-precision singles

(Di)Jet Pair/Triplet reconstruction

Control/vary parton energies

Vary quark-parton masses

Full jet reconstruction

Low-x<sub>Bi</sub> processes

Very high-mass secondaries in d/p/A+A

# Detector & Running Conditions

Forward tracking

Forward calorimetery

Asymmetric ion collisions

Asymmetric beam-energy A+A running

Neutron detection

Reversed magnetic field systematics

High-statistics A+A

Low-energy A+A running

C/B meson reconstruction

Jet triggering

High-statistics d+A